

Customer

Waterbody

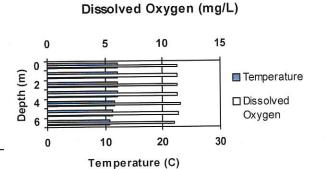
Sample Information

Twin Lake (Muskegon)

Twin Lake

Date: 4/23/2019

Deep Hole Site:


On-Site Results

Depth	Temperature	Dissolved	Oxygen	
(m)	(degrees C)	mg/L	%	
0	12.2	11.3	105	
1	12.2	11.3	105	
2	12.2	11.3	105	
3	12.1	11.3	105	
4	11.6	11.6	106	
5	11.3	11.3	105	
6	10.8	11.0	101	

4.0 meters

Thermocline Depth

meters

Analytical Results

Parameter	Result	Units	Interpretation
Fecal Bacteria (E. coli		CFU/100 mL	N/A
Conductivity	124	uS/cm	Low concentration of dissolved salts
Total Dissolved Solids	81	mg/L	LOW CONCENTRATION OF dissolved sates
pН	7.9	S.U.	Water is slightly alkaline
Alkalinity	29	mg CaCO3/	LWater is very soft
Total Phosphorus	12	ug/L	Moderately phosphorus enriched
Nitrates	200	ug/L	Not nitrogen enriched
Chlorophyll	N/A		

Trophic State Evaluation

TSI Trophic Status

Based on Secchi Disk Depth

40 mesotrophic

Based on Total Phosphorus

36 meso-oligotrophic

Based on Chlorophyll

N/A

Conclusions

- Conditions are good for fish growth.
- Minimum dissolved oxygen is adequate for good fish production.
- pH is within acceptable limits.
- 🦲 Sample is somewhat phosphorus enriched. Create natural buffer between lawn & lakeshore.
- Repeat LakeCheck in Fall.
- WARNING. condition requires immediate attention.
- CAUTION, condition requires further evaluation.
- OK. condition within acceptable limits.
- NEUTRAL, condition neither good nor bad.

Notes

Report describes conditions at the time the sample was collected.

Approved by

Mrs. Jaimee Cohroy, Technical Services Manager

Date 11/21/2019

FROM YOUR

PLM Lake & Land Management Corp P.O. Box 132

Caledonia

MI 49316-

Phone: (616) 891-1294

Customer

Waterbody

Sample Information

Twin Lake (Muskegon)

Twin Lake

Date: 9/4/2019

Site: Deep Hole

On-Site Results

Depth Temperature		Dissolved Oxygen		
(m)	(degrees C)	mg/L	%	
0	21.7	9.2	91	
1	21.7	9.1	89	
2	21.7	8.9	87	
3	21.6	8.6	95	
4	21.5	8.0	79	
5	21.2	7.5	72	
6_	20.3	6.9	68	
Control of the Contro				

3.5 meters

Thermocline Depth

meters

		Dissolve	d Oxyger	mg/	L)
	0	5	10	15	
Depth (m)	0 2 4 6				■ Temperature□ Dissolved Oxygen
	0	10	20	30	
		Tempera	ture (C)		

Analytical Results

Parameter	Result	Units	Interpretation
Fecal Bacteria (E. coli		CFU/100 mL	N/A
Conductivity	131	uS/cm	Low concentration of dissolved salts
Total Dissolved Solids	85	mg/L	
pH	7.9	S.U.	Water is slightly alkaline
Alkalinity	59	mg CaCO3/	LWater is very soft
Total Phosphorus	7	ug/L	Slightly phosphorus enriched
Nitrates	200	ug/L	Not nitrogen enriched
Chlorophyll	N/A		

Trophic State Evaluation

TSI Trophic Status

Based on Secchi Disk Depth

42 mesotrophic

Based on Total Phosphorus

28 oligotrophic

Based on Chlorophyll

N/A

Conclusions

- Conditions are good for fish growth.
- Minimum dissolved oxygen is adequate for good fish production.
- pH is within acceptable limits.
- Phosphorus and Nitrogen are within acceptable limits.
- REPEAT LakeCheck NEXT YEAR!
- WARNING. condition requires immediate attention.
- CAUTION. condition requires further evaluation.
- OK. condition within acceptable limits.
- NEUTRAL, condition neither good nor bad.

Notes

Report describes conditions at the time the sample was collected.

Approved by

Mrs. Jaimee Cohroy, Technical Services Manager

Date 11/21/2019

FROM YOUR

PLM Lake & Land Management Corp P.O. Box 132

Caledonia MI 49316-

Phone: (616) 891-1294

Bacteria Sampling Report

Waterbody:

Twin Lake (Muskegon)

Twin Lake (Muskegon)

Date Sampled:

7/9/2019

Location	E. coli	Total Coliforms	Interpretation
#1	1	N/A	Water meets bacteriological standards for safe swimming.
#2	1	N/A	Water meets bacteriological standards for safe swimming.
#3	1	N/A	Water meets bacteriological standards for safe swimming.

Bacterial counts are expressed as the number of Colony Forming Units per 100 milliliters (CFU/100mL).

For full body contact recreation (including swimming) counts of E. coli should not exceed 130 (CFU/100mL)as a monthly geometric mean of at least five samples per the State of Michigan standard, or single samples should not exceed 298 (CFU/100mL) [235 CFU/100mL in a designated bathing beach area] per Federal (EPA) guidelines.

Current recreational water quality standards do not rely on Total Coliform counts.

Approved by

aimee Conroy, Technical Services Manager

Date 11-Jul-19

PLM . RESULT OF THE PROPERTY O

PLM Lake & Land Management Corp

P.O. Box 132

Caledonia MI 49316-

Phone: (616) 891-1294

TORK SOURCES IN THE REST OF THE